کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666854 1345423 2011 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hochster's theta invariant and the Hodge–Riemann bilinear relations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Hochster's theta invariant and the Hodge–Riemann bilinear relations
چکیده انگلیسی

Let R be an isolated hypersurface singularity, and let M and N be finitely generated R-modules. As R is a hypersurface, the torsion modules of M against N are eventually periodic of period two (i.e., for i≫0). Since R has only an isolated singularity, these torsion modules are of finite length for i≫0. The theta invariant of the pair (M,N) is defined by Hochster to be for i≫0. H. Dao has conjectured that the theta invariant is zero for all pairs (M,N) when R has even dimension and contains a field. This paper proves this conjecture under the additional assumption that R is graded with its irrelevant maximal ideal giving the isolated singularity. We also give a careful analysis of the theta pairing when the dimension of R is odd, and relate it to a classical pairing on the smooth variety Proj(R).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 226, Issue 2, 30 January 2011, Pages 1692-1714