کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666908 1345427 2010 57 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees
چکیده انگلیسی

Transient random walk on a tree induces a Dirichlet form on its Martin boundary, which is the Cantor set. The procedure of the inducement is analogous to that of the Douglas integral on S1 associated with the Brownian motion on the unit disk. In this paper, those Dirichlet forms on the Cantor set induced by random walks on trees are investigated. Explicit expressions of the hitting distribution (harmonic measure) ν and the induced Dirichlet form on the Cantor set are given in terms of the effective resistances. An intrinsic metric on the Cantor set associated with the random walk is constructed. Under the volume doubling property of ν with respect to the intrinsic metric, asymptotic behaviors of the heat kernel, the jump kernel and moments of displacements of the process associated with the induced Dirichlet form are obtained. Furthermore, relation to the noncommutative Riemannian geometry is discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 225, Issue 5, 1 December 2010, Pages 2674-2730