کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666914 | 1345427 | 2010 | 43 صفحه PDF | دانلود رایگان |

The construction of topological index maps for equivariant families of Dirac operators requires factoring a general smooth map through maps of a very simple type: zero sections of vector bundles, open embeddings, and vector bundle projections. Roughly speaking, a normally non-singular map is a map together with such a factorisation. These factorisations are models for the topological index map. Under some assumptions concerning the existence of equivariant vector bundles, any smooth map admits a normal factorisation, and two such factorisations are unique up to a certain notion of equivalence. To prove this, we generalise the Mostow Embedding Theorem to spaces equipped with proper groupoid actions. We also discuss orientations of normally non-singular maps with respect to a cohomology theory and show that oriented normally non-singular maps induce wrong-way maps on the chosen cohomology theory. For K-oriented normally non-singular maps, we also get a functor to Kasparov's equivariant KK-theory. We interpret this functor as a topological index map.
Journal: Advances in Mathematics - Volume 225, Issue 5, 1 December 2010, Pages 2840-2882