کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666980 1345432 2010 46 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The asymptotics of a Bessel-kernel determinant which arises in Random Matrix Theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The asymptotics of a Bessel-kernel determinant which arises in Random Matrix Theory
چکیده انگلیسی

In Random Matrix Theory the local correlations of the Laguerre and Jacobi Unitary Ensemble in the hard edge scaling limit can be described in terms of the Bessel kernelBα(x,y)=xyJα(x)yJα′(y)−Jα(y)xJα′(x)x2−y2,x,y>0,α>−1. In particular, the so-called hard edge gap probabilities P(α)(R)P(α)(R) can be expressed as the Fredholm determinants of the corresponding integral operator BαBα restricted to the finite interval [0,R][0,R]. Using operator theoretic methods we are going to compute their asymptotics as R→∞R→∞, i.e., we show thatP(α)(R):=det(I−Bα)|L2[0,R]∼exp(−R24+αR−α22logR)G(1+α)(2π)α/2, where G stands for the Barnes G-function. In fact, this asymptotic formula will be proved for all complex parameters α   satisfying |Reα|<1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 225, Issue 6, 20 December 2010, Pages 3088–3133
نویسندگان
,