کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666981 1345432 2010 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Friezes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Friezes
چکیده انگلیسی

The construction of friezes is motivated by the theory of cluster algebras. It gives, for each acyclic quiver, a family of integer sequences, one for each vertex. We conjecture that these sequences satisfy linear recursions if and only if the underlying graph is a Dynkin or an Euclidean (affine) graph. We prove the “only if” part, and show that the “if” part holds true for all non-exceptional Euclidean graphs, leaving a finite number of finite number of cases to be checked. Coming back to cluster algebras, the methods involved allow us to give formulas for the cluster variables in case Am and ; the novelty is that these formulas use 2 by 2 matrices over the semiring of Laurent polynomials generated by the initial variables (which explains simultaneously positivity and the Laurent phenomenon). One tool involved consists of the SL2-tilings of the plane, which are particular cases of T-systems of Mathematical Physics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 225, Issue 6, 20 December 2010, Pages 3134-3165