کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4667099 | 1345438 | 2009 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Differential operators and crystals of extremal weight modules
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We give a combinatorial realization of extremal weight crystals over the quantum group of type A+∞ and their Littlewood–Richardson rule. Based on this description, we show that the Grothendieck ring generated by the isomorphism classes of extremal weight A+∞-crystals is isomorphic to the Weyl algebra of infinite rank, and hence each isomorphism class is realized as a differential operator or non-commutative Schur function acting on the algebra of symmetric functions. We also find a duality between extremal weight A+∞-crystals and generalized Verma A∞-crystals appearing in the crystal of the Fock space with infinite level, which recovers the generalized Cauchy identity for Schur operators in a bijective and crystal theoretic way.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 222, Issue 4, 10 November 2009, Pages 1339-1369
Journal: Advances in Mathematics - Volume 222, Issue 4, 10 November 2009, Pages 1339-1369