کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667099 1345438 2009 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Differential operators and crystals of extremal weight modules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Differential operators and crystals of extremal weight modules
چکیده انگلیسی

We give a combinatorial realization of extremal weight crystals over the quantum group of type A+∞ and their Littlewood–Richardson rule. Based on this description, we show that the Grothendieck ring generated by the isomorphism classes of extremal weight A+∞-crystals is isomorphic to the Weyl algebra of infinite rank, and hence each isomorphism class is realized as a differential operator or non-commutative Schur function acting on the algebra of symmetric functions. We also find a duality between extremal weight A+∞-crystals and generalized Verma A∞-crystals appearing in the crystal of the Fock space with infinite level, which recovers the generalized Cauchy identity for Schur operators in a bijective and crystal theoretic way.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 222, Issue 4, 10 November 2009, Pages 1339-1369