کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667149 1345441 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Zassenhaus variety of a reductive Lie algebra in positive characteristic
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The Zassenhaus variety of a reductive Lie algebra in positive characteristic
چکیده انگلیسی

Let g be the Lie algebra of a connected reductive group G over an algebraically closed field k of characteristic p>0. Let Z be the centre of the universal enveloping algebra U=U(g) of g. Its maximal spectrum is called the Zassenhaus variety of g. We show that, under certain mild assumptions on G, the field of fractions Frac(Z) of Z is G-equivariantly isomorphic to the function field of the dual space g∗ with twisted G-action. In particular Frac(Z) is rational. This confirms a conjecture of J. Alev. Furthermore we show that Z is a unique factorisation domain, confirming a conjecture of A. Braun and C. Hajarnavis. Recently, A. Premet used the above result about Frac(Z), a result of Colliot-Thelene, Kunyavskii, Popov and Reichstein and reduction mod p arguments to show that the Gelfand–Kirillov conjecture cannot hold for simple complex Lie algebras that are not of type A, C or G2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 224, Issue 1, 1 May 2010, Pages 340-354