کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667167 1345442 2009 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pseudo-Riemannian geodesics and billiards
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Pseudo-Riemannian geodesics and billiards
چکیده انگلیسی

In pseudo-Riemannian geometry the spaces of space-like and time-like geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generalizations. We also introduce and study pseudo-Euclidean billiards, emphasizing their distinction from Euclidean ones. We present a pseudo-Euclidean version of the Clairaut theorem on geodesics on surfaces of revolution. We prove pseudo-Euclidean analogs of the Jacobi–Chasles theorems and show the integrability of the billiard in the ellipsoid and the geodesic flow on the ellipsoid in a pseudo-Euclidean space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 221, Issue 4, 10 July 2009, Pages 1364-1396