کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667177 1345443 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spherical homogeneous spaces of minimal rank
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Spherical homogeneous spaces of minimal rank
چکیده انگلیسی

Let G be a connected reductive algebraic group over an algebraically closed field K of characteristic zero. Let G/B denote the complete flag variety of G. A G-homogeneous space G/H is said to be spherical if H has finitely many orbits in G/B. A class of spherical homogeneous spaces containing the tori, the complete homogeneous spaces and the group G (viewed as a G×G-homogeneous space) has particularly nice properties. Namely, the pair (G,H) is called a spherical pair of minimal rank if there exists x in G/B such that the orbit H.x of x by H is open in G/B and the stabilizer Hx of x in H contains a maximal torus of H. In this article, we study and classify the spherical pairs of minimal rank.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 224, Issue 5, 1 August 2010, Pages 1784-1800