کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667187 1345443 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Divided powers in Chow rings and integral Fourier transforms
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Divided powers in Chow rings and integral Fourier transforms
چکیده انگلیسی

We prove that for any monoid scheme M over a field with proper multiplication maps M×M→M, we have a natural PD-structure on the ideal CH>0(M)⊂CH∗(M) with regard to the Pontryagin ring structure. Further we investigate to what extent it is possible to define a Fourier transform on the motive with integral coefficients of the Jacobian of a curve. For a hyperelliptic curve of genus g with sufficiently many k-rational Weierstrass points, we construct such an integral Fourier transform with all the usual properties up to N2-torsion, where N=1+⌊log2(3g)⌋. As a consequence we obtain, over , a PD-structure (for the intersection product) on N2⋅a, where a⊂CH(J) is the augmentation ideal. We show that a factor 2 in the properties of an integral Fourier transform cannot be eliminated even for elliptic curves over an algebraically closed field.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 224, Issue 5, 1 August 2010, Pages 2216-2236