کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667210 1345445 2009 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Crystals, quiver varieties, and coboundary categories for Kac–Moody algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Crystals, quiver varieties, and coboundary categories for Kac–Moody algebras
چکیده انگلیسی

Henriques and Kamnitzer have defined a commutor for the category of crystals of a finite-dimensional complex reductive Lie algebra that gives it the structure of a coboundary category (somewhat analogous to a braided monoidal category). Kamnitzer and Tingley then gave an alternative definition of the crystal commutor, using Kashiwara's involution on Verma crystals, that generalizes to the setting of symmetrizable Kac–Moody algebras. In the current paper, we give a geometric interpretation of the crystal commutor using quiver varieties. Equipped with this interpretation we show that the commutor endows the category of crystals of a symmetrizable Kac–Moody algebra with the structure of a coboundary category, answering in the affirmative a question of Kamnitzer and Tingley.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 221, Issue 1, 1 May 2009, Pages 22-53