کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667213 1345445 2009 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inverse problems and index formulae for Dirac operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Inverse problems and index formulae for Dirac operators
چکیده انگلیسی

We consider a Dirac-type operator DP on a vector bundle V over a compact Riemannian manifold (M,g) with a non-empty boundary. The operator DP is specified by a boundary condition P(u|∂M)=0 where P is a projector which may be a non-local, i.e., a pseudodifferential operator. We assume the existence of a chirality operator which decomposes L2(M,V) into two orthogonal subspaces X+⊕X−. Under certain conditions, the operator DP restricted to X+ and X− defines a pair of Fredholm operators which maps X+→X− and X−→X+ correspondingly, giving rise to a superstructure on V. In this paper we consider the questions of determining the index of DP and the reconstruction of and DP from the boundary data on ∂M. The data used is either the Cauchy data, i.e., the restrictions to ∂M×R+ of the solutions to the hyperbolic Dirac equation, or the boundary spectral data, i.e., the set of the eigenvalues and the boundary values of the eigenfunctions of DP. We obtain formulae for the index and prove uniqueness results for the inverse boundary value problems. We apply the obtained results to the classical Dirac-type operator in M×C4, M⊂R3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 221, Issue 1, 1 May 2009, Pages 170-216