کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667215 1345445 2009 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the spectra of a Cantor measure
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
On the spectra of a Cantor measure
چکیده انگلیسی

We analyze all orthonormal bases of exponentials on the Cantor set defined by Jorgensen and Pedersen in J. Anal. Math. 75 (1998) 185–228. A complete characterization for all maximal sets of orthogonal exponentials is obtained by establishing a one-to-one correspondence with the spectral labelings of the infinite binary tree. With the help of this characterization we obtain a sufficient condition for a spectral labeling to generate a spectrum (an orthonormal basis). This result not only provides us an easy and efficient way to construct various of new spectra for the Cantor measure but also extends many previous results in the literature. In fact, most known examples of orthonormal bases of exponentials correspond to spectral labelings satisfying this sufficient condition. We also obtain two new conditions for a labeling tree to generate a spectrum when other digits (digits not necessarily in {0,1,2,3}) are used in the base 4 expansion of integers and when bad branches are allowed in the spectral labeling. These new conditions yield new examples of spectra and in particular lead to a surprizing example which shows that a maximal set of orthogonal exponentials is not necessarily an orthonormal basis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 221, Issue 1, 1 May 2009, Pages 251-276