کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667283 1345449 2009 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Conjugate points in length spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Conjugate points in length spaces
چکیده انگلیسی

In this paper we extend the concept of a conjugate point in a Riemannian manifold to geodesic spaces. In particular, we introduce symmetric conjugate points and ultimate conjugate points and relate these notions to prior notions developed for more restricted classes of spaces. We generalize the long homotopy lemma of Klingenberg to this setting as well as the injectivity radius estimate also due to Klingenberg which was used to produce closed geodesics or conjugate points on Riemannian manifolds. We close with applications of these new kinds of conjugate points to CBA(κ) spaces: proving both known and new theorems. In particular we prove a Rauch comparison theorem, a Relative Rauch Comparison Theorem, the fact that there are no ultimate conjugate points less than π apart in a CBA(1) space and a few facts concerning closed geodesics. This paper is written to be accessible to students and includes open problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 220, Issue 3, 15 February 2009, Pages 791-830