کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667355 1345454 2009 58 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantisation commutes with reduction at discrete series representations of semisimple groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Quantisation commutes with reduction at discrete series representations of semisimple groups
چکیده انگلیسی

Using the analytic assembly map that appears in the Baum–Connes conjecture in noncommutative geometry, we generalise the Guillemin–Sternberg conjecture that ‘quantisation commutes with reduction’ to (discrete series representations of) semisimple groups G with maximal compact subgroups K acting cocompactly on symplectic manifolds. We prove this generalised statement in cases where the image of the momentum map in question lies in the set of strongly elliptic elements , the set of elements of g∗ with compact stabilisers. This assumption on the image of the momentum map is equivalent to the assumption that M=G×KN, for a compact Hamiltonian K-manifold N. The proof comes down to a reduction to the compact case. This reduction is based on a ‘quantisation commutes with induction’-principle, and involves a notion of induction of Hamiltonian group actions. This principle, in turn, is based on a version of the naturality of the assembly map for the inclusion K↪G.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 222, Issue 3, 20 October 2009, Pages 862-919