کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667373 1345455 2009 60 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups
چکیده انگلیسی

We solve Gromov's dimension comparison problem for Hausdorff and box counting dimension on Carnot groups equipped with a Carnot–Carathéodory metric and an adapted Euclidean metric. The proofs use sharp covering theorems relating optimal mutual coverings of Euclidean and Carnot–Carathéodory balls, and elements of sub-Riemannian fractal geometry associated to horizontal self-similar iterated function systems on Carnot groups. Inspired by Falconer's work on almost sure dimensions of Euclidean self-affine fractals we show that Carnot–Carathéodory self-similar fractals are almost surely horizontal. As a consequence we obtain explicit dimension formulae for invariant sets of Euclidean iterated function systems of polynomial type. Jet space Carnot groups provide a rich source of examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 220, Issue 2, 30 January 2009, Pages 560-619