کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4667373 | 1345455 | 2009 | 60 صفحه PDF | دانلود رایگان |

We solve Gromov's dimension comparison problem for Hausdorff and box counting dimension on Carnot groups equipped with a Carnot–Carathéodory metric and an adapted Euclidean metric. The proofs use sharp covering theorems relating optimal mutual coverings of Euclidean and Carnot–Carathéodory balls, and elements of sub-Riemannian fractal geometry associated to horizontal self-similar iterated function systems on Carnot groups. Inspired by Falconer's work on almost sure dimensions of Euclidean self-affine fractals we show that Carnot–Carathéodory self-similar fractals are almost surely horizontal. As a consequence we obtain explicit dimension formulae for invariant sets of Euclidean iterated function systems of polynomial type. Jet space Carnot groups provide a rich source of examples.
Journal: Advances in Mathematics - Volume 220, Issue 2, 30 January 2009, Pages 560-619