کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667415 1345458 2010 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods
چکیده انگلیسی

We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space R2,1. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group SU2 with SU1,1. The non-compactness of the latter group, however, means that the Iwasawa decomposition of the loop group, used to construct the surfaces, is not global. We prove that it is defined on an open dense subset, after doubling the size of the real form SU1,1, and prove several results concerning the behavior of the surface as the boundary of this open set is encountered. We then use the generalized Weierstrass representation to create and classify new examples of spacelike CMC surfaces in R2,1. In particular, we classify surfaces of revolution and surfaces with screw motion symmetry, as well as studying another class of surfaces for which the metric is rotationally invariant.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 223, Issue 3, 15 February 2010, Pages 949-986