کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4667488 | 1345462 | 2008 | 36 صفحه PDF | دانلود رایگان |

Let S be a finite solvable group, and suppose S acts on the finite group N, and they have coprime orders. Then, the celebrated Glauberman correspondence provides a natural bijection from the set IrrS(N) of irreducible characters of N which are invariant under the action of S to the set Irr(CN(S)) of all irreducible characters of the centralizer of S in N. Suppose, further, that the semidirect product SN is a normal subgroup of a finite group G. Let θ∈IrrS(N), and let ψ∈Irr(CN(S)) be its Glauberman correspondent. We prove that there is a bijection with good compatibility properties from the set Irr(G,θ) of the irreducible characters of G above θ to Irr(NG(S),ψ) such that, in the case when S is a p-group for some prime p, it preserves fields of values and Schur indices over Qp, the field of p-adic numbers. Using this result, we also prove a strengthening of the McKay Conjecture for all p-solvable groups.
Journal: Advances in Mathematics - Volume 217, Issue 5, 20 March 2008, Pages 2170-2205