کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667491 1345462 2008 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Representation and character theory in 2-categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Representation and character theory in 2-categories
چکیده انگلیسی

We develop a (2-)categorical generalization of the theory of group representations and characters. We categorify the concept of the trace of a linear transformation, associating to any endofunctor of any small category a set called its categorical trace. In a linear situation, the categorical trace is a vector space and we associate to any two commuting self-equivalences a number called their joint trace. For a group acting on a linear category V we define an analog of the character which is the function on commuting pairs of group elements given by the joint traces of the corresponding functors. We call this function the 2-character of V. Such functions of commuting pairs (and more generally, n-tuples) appear in the work of Hopkins, Kuhn and Ravenel [Michael J. Hopkins, Nicholas J. Kuhn, Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (3) (2000) 553–594 (electronic)] on equivariant Morava E-theories. We define the concept of induced categorical representation and show that the corresponding 2-character is given by the same formula as was obtained in [Michael J. Hopkins, Nicholas J. Kuhn, Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (3) (2000) 553–594 (electronic)] for the transfer map in the second equivariant Morava E-theory.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 217, Issue 5, 20 March 2008, Pages 2268-2300