کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667505 1345463 2010 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monge–Ampère equations and moduli spaces of manifolds of circular type
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Monge–Ampère equations and moduli spaces of manifolds of circular type
چکیده انگلیسی

A (bounded) manifold of circular type is a complex manifold M of dimension n admitting a (bounded) exhaustive real function u, defined on M minus a point xo, so that: (a) it is a smooth solution on M∖{xo} to the Monge–Ampère equation n(ddcu)=0; (b) xo is a singular point for u of logarithmic type and eu extends smoothly on the blow up of M at xo; (c) ddc(eu)>0 at any point of M∖{xo}. This class of manifolds naturally includes all smoothly bounded, strictly linearly convex domains and all smoothly bounded, strongly pseudoconvex circular domains of Cn.A set of modular parameters for bounded manifolds of circular type is considered. In particular, for each biholomorphic equivalence class of them it is proved the existence of an essentially unique manifold in normal form. It is also shown that the class of normalizing maps for an n-dimensional manifold M is a new holomorphic invariant with the following property: it is parameterized by the points of a finite dimensional real manifold of dimension n2 when M is a (non-convex) circular domain while it is of dimension n2+2n when M is a strictly linearly convex domain. New characterizations of the circular domains and of the unit ball are also obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 223, Issue 1, 15 January 2010, Pages 174-197