کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667506 1345463 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Poisson equation on complete manifolds with positive spectrum and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The Poisson equation on complete manifolds with positive spectrum and applications
چکیده انگلیسی

In this paper we investigate the existence of a solution to the Poisson equation on complete manifolds with positive spectrum and Ricci curvature bounded from below. We show that if a function f has decay f=O(r−1−ε) for some ε>0, where r is the distance function to a fixed point, then the Poisson equation Δu=f has a solution u with at most exponential growth.We apply this result on the Poisson equation to study the existence of harmonic maps between complete manifolds and also existence of Hermitian–Einstein metrics on holomorphic vector bundles over complete manifolds, thus extending some results of Li–Tam and Ni.Assuming moreover that the manifold is simply connected and of Ricci curvature between two negative constants, we can prove that in fact the Poisson equation has a bounded solution and we apply this result to the Ricci flow on complete surfaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 223, Issue 1, 15 January 2010, Pages 198-219