کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667547 1345465 2007 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The dual Brunn–Minkowski theory for bounded Borel sets: Dual affine quermassintegrals and inequalities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The dual Brunn–Minkowski theory for bounded Borel sets: Dual affine quermassintegrals and inequalities
چکیده انگلیسی

This paper develops a significant extension of E. Lutwak's dual Brunn–Minkowski theory, originally applicable only to star-shaped sets, to the class of bounded Borel sets. The focus is on expressions and inequalities involving chord-power integrals, random simplex integrals, and dual affine quermassintegrals. New inequalities obtained include those of isoperimetric and Brunn–Minkowski type. A new generalization of the well-known Busemann intersection inequality is also proved. Particular attention is given to precise equality conditions, which require results stating that a bounded Borel set, almost all of whose sections of a fixed dimension are essentially convex, is itself essentially convex.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 216, Issue 1, 1 December 2007, Pages 358-386