کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667580 1345467 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the vertex index of convex bodies
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
On the vertex index of convex bodies
چکیده انگلیسی

We introduce the vertex index, vein(K)vein(K), of a given centrally symmetric convex body K⊂RdK⊂Rd, which, in a sense, measures how well K can be inscribed into a convex polytope with small number of vertices. This index is closely connected to the illumination parameter of a body, introduced earlier by the first named author, and, thus, related to the famous conjecture in Convex Geometry about covering of a d  -dimensional body by d22d smaller positively homothetic copies. We provide asymptotically sharp estimates (up to a logarithmic term) of this index in the general case. More precisely, we show that for every centrally symmetric convex body K⊂RdK⊂Rd one hasd3/22πeovr(K)⩽vein(K)⩽Cd3/2ln(2d), where ovr(K)=inf(vol(E)/vol(K))1/dovr(K)=inf(vol(E)/vol(K))1/d is the outer volume ratio of K with the infimum taken over all ellipsoids E⊃KE⊃K and with vol(⋅)vol(⋅) denoting the volume. Also, we provide sharp estimates in dimensions 2 and 3. Namely, in the planar case we prove that 4⩽vein(K)⩽64⩽vein(K)⩽6 with equalities for parallelograms and affine regular convex hexagons, and in the 3-dimensional case we show that 6⩽vein(K)6⩽vein(K) with equality for octahedra. We conjecture that the vertex index of a d  -dimensional Euclidean ball (respectively ellipsoid) is 2dd. We prove this conjecture in dimensions two and three.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 215, Issue 2, 10 November 2007, Pages 626–641
نویسندگان
, ,