کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667665 1345472 2008 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Ozsváth–Szabó Floer homology invariant of knots in a contact manifold
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
An Ozsváth–Szabó Floer homology invariant of knots in a contact manifold
چکیده انگلیسی

Using the knot Floer homology filtration, we define invariants associated to a knot in a three-manifold possessing non-vanishing Floer co(homology) classes. In the case of the Ozsváth–Szabó contact invariant we obtain an invariant of knots in a contact three-manifold. This invariant provides an upper bound for the Thurston–Bennequin plus rotation number of any Legendrian realization of the knot. We use it to demonstrate the first systematic construction of prime knots in contact manifolds other than S3 with negative maximal Thurston–Bennequin invariant. Perhaps more interesting, our invariant provides a criterion for an open book to induce a tight contact structure. A corollary is that if a manifold possesses contact structures with distinct non-vanishing Ozsváth–Szabó invariants, then any fibered knot can realize the classical Eliashberg–Bennequin bound in at most one of these contact structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 219, Issue 1, 10 September 2008, Pages 89-117