کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667695 1345474 2007 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Higher dimensional knot spaces for manifolds with vector cross products
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Higher dimensional knot spaces for manifolds with vector cross products
چکیده انگلیسی

Vector cross product structures on manifolds include symplectic, volume, G2- and Spin(7)-structures. We show that the knot spaces of such manifolds have natural symplectic structures, and relate instantons and branes in these manifolds to holomorphic disks and Lagrangian submanifolds in their knot spaces.For the complex case, the holomorphic volume form on a Calabi–Yau manifold defines a complex vector cross product structure. We show that its isotropic knot space admits a natural holomorphic symplectic structure. We also relate the Calabi–Yau geometry of the manifold to the holomorphic symplectic geometry of its isotropic knot space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 213, Issue 1, 1 August 2007, Pages 140-164