کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4667704 | 1345474 | 2007 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence and the length spectrum
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The author defines and analyzes the 1/k length spectra, L1/k(M), whose union, over all k∈N is the classical length spectrum. These new length spectra are shown to converge in the sense that limk→∞K1/k(Mi)⊂L1/k(M)∪{0} as Mi→M in the Gromov–Hausdorff sense. Energy methods are introduced to estimate the shortest element of L1/k, as well as a concept called the minimizing index which may be used to estimate the length of the shortest closed geodesic of a simply connected manifold in any dimension. A number of gap theorems are proven, including one for manifolds, Mn, with Ricci⩾(n−1) and volume close to Vol(Sn). Many results in this paper hold on compact length spaces in addition to Riemannian manifolds.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 213, Issue 1, 1 August 2007, Pages 405-439
Journal: Advances in Mathematics - Volume 213, Issue 1, 1 August 2007, Pages 405-439