کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667760 1345477 2007 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dimension growth for C∗-algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Dimension growth for C∗-algebras
چکیده انگلیسی

We introduce the growth rank of a C∗-algebra—a (N∪{∞})-valued invariant whose minimal instance is equivalent to the condition that an algebra absorbs the Jiang–Su algebra Z tensorially—and prove that its range is exhausted by simple, nuclear C∗-algebras. As consequences we obtain a well developed theory of dimension growth for approximately homogeneous (AH) C∗-algebras, establish the existence of simple, nuclear, and non-Z-stable C∗-algebras which are not tensorially prime, and show the assumption of Z-stability to be particularly natural when seeking classification results for nuclear C∗-algebras via K-theory.The properties of the growth rank lead us to propose a universal property which can be considered inside any class of unital and nuclear C∗-algebras. We prove that Z satisfies this universal property inside a large class of locally subhomogeneous algebras, representing the first uniqueness theorem for Z which does not depend on the classification theory of nuclear C∗-algebras.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 213, Issue 2, 20 August 2007, Pages 820-848