کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667787 1345479 2007 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Frobenius–Schur indicators and exponents of spherical categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Frobenius–Schur indicators and exponents of spherical categories
چکیده انگلیسی

We obtain two formulae for the higher Frobenius–Schur indicators: one for a spherical fusion category in terms of the twist of its center and the other one for a modular tensor category in terms of its twist. The first one is a categorical generalization of an analogous result by Kashina, Sommerhäuser, and Zhu for Hopf algebras, and the second one extends Bantay's 2nd indicator formula for a conformal field theory to higher degrees. These formulae imply the sequence of higher indicators of an object in these categories is periodic. We define the notion of Frobenius–Schur (FS-)exponent of a pivotal category to be the global period of all these sequences of higher indicators, and we prove that the FS-exponent of a spherical fusion category is equal to the order of the twist of its center. Consequently, the FS-exponent of a spherical fusion category is a multiple of its exponent, in the sense of Etingof, by a factor not greater than 2. As applications of these results, we prove that the exponent and the dimension of a semisimple quasi-Hopf algebra H have the same prime divisors, which answers two questions of Etingof and Gelaki affirmatively for quasi-Hopf algebras. Moreover, we prove that the FS-exponent of H divides dim4(H). In addition, if H is a group-theoretic quasi-Hopf algebra, the FS-exponent of H divides dim2(H), and this upper bound is shown to be tight.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 211, Issue 1, 1 May 2007, Pages 34-71