کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667798 1345479 2007 54 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Link homology theories from symplectic geometry
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Link homology theories from symplectic geometry
چکیده انگلیسی

For each positive integer n, Khovanov and Rozansky constructed an invariant of links in the form of a doubly-graded cohomology theory whose Euler characteristic is the sl(n) link polynomial. We use Lagrangian Floer cohomology on some suitable affine varieties to build a similar series of link invariants, and we conjecture them to be equal to those of Khovanov and Rozansky after a collapse of the bigrading. Our work is a generalization of that of Seidel and Smith, who treated the case n=2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 211, Issue 1, 1 May 2007, Pages 363-416