کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4667860 | 1345483 | 2007 | 43 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Algebras, hyperalgebras, nonassociative bialgebras and loops
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Sabinin algebras are a broad generalization of Lie algebras that include Lie, Malcev and Bol algebras as very particular examples. We present a construction of a universal enveloping algebra for Sabinin algebras, and the corresponding Poincaré–Birkhoff–Witt Theorem. A nonassociative counterpart of Hopf algebras is also introduced and a version of the Milnor–Moore Theorem is proved. Loop algebras and universal enveloping algebras of Sabinin algebras are natural examples of these nonassociative Hopf algebras. Identities of loops move to identities of nonassociative Hopf algebras by a linearizing process. In this way, nonassociative algebras and Hopf algebras interlace smoothly.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 208, Issue 2, 30 January 2007, Pages 834-876
Journal: Advances in Mathematics - Volume 208, Issue 2, 30 January 2007, Pages 834-876