کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667875 1633858 2007 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continued fractions with multiple limits
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Continued fractions with multiple limits
چکیده انگلیسی

For integers m⩾2, we study divergent continued fractions whose numerators and denominators in each of the m arithmetic progressions modulo m converge. Special cases give, among other things, an infinite sequence of divergence theorems, the first of which is the classical Stern–Stolz theorem.We give a theorem on a class of Poincaré-type recurrences which shows that they tend to limits when the limits are taken in residue classes and the roots of their characteristic polynomials are distinct roots of unity.We also generalize a curious q-continued fraction of Ramanujan's with three limits to a continued fraction with k distinct limit points, k⩾2. The k limits are evaluated in terms of ratios of certain q-series.Finally, we show how to use Daniel Bernoulli's continued fraction in an elementary way to create analytic continued fractions with m limit points, for any positive integer m⩾2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 210, Issue 2, 1 April 2007, Pages 578-606