کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667877 1633858 2007 72 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Configurations in abelian categories. II. Ringel–Hall algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Configurations in abelian categories. II. Ringel–Hall algebras
چکیده انگلیسی

This is the second in a series on configurations in an abelian category A. Given a finite poset (I,≼), an (I,≼)-configuration(σ,ι,π) is a finite collection of objects σ(J) and morphisms ι(J,K) or in A satisfying some axioms, where J,K⊆I. Configurations describe how an object X in A decomposes into subobjects.The first paper defined configurations and studied moduli spaces of (I,≼)-configurations in A, using the theory of Artin stacks. It showed well-behaved moduli stacks ObjA,M(I,≼)A of objects and configurations in A exist when A is the abelian category coh(P) of coherent sheaves on a projective scheme P, or mod-KQ of representations of a quiver Q.Write CF(ObjA) for the vector space of Q-valued constructible functions on the stack ObjA. Motivated by the idea of Ringel–Hall algebras, we define an associative multiplication ∗ on CF(ObjA) using pushforwards and pullbacks along 1-morphisms between configuration moduli stacks, so that CF(ObjA) is a Q-algebra. We also study representations of CF(ObjA), the Lie subalgebra CFind(ObjA) of functions supported on indecomposables, and other algebraic structures on CF(ObjA).Then we generalize all these ideas to stack functions, a universal generalization of constructible functions, containing more information. When Exti(X,Y)=0 for all X,Y∈A and i>1, or when A=coh(P) for P a Calabi–Yau 3-fold, we construct (Lie) algebra morphisms from stack algebras to explicit algebras, which will be important in the sequels on invariants counting τ-semistable objects in A.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 210, Issue 2, 1 April 2007, Pages 635-706