کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667897 1345485 2006 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topology and combinatorics of partitions of masses by hyperplanes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Topology and combinatorics of partitions of masses by hyperplanes
چکیده انگلیسی

An old problem in combinatorial geometry is to determine when one or more measurable sets in Rd admit an equipartition by a collection of k hyperplanes [B. Grünbaum, Partitions of mass-distributions and convex bodies by hyperplanes, Pacific J. Math. 10 (1960) 1257–1261]. A related topological problem is the question of (non)existence of a map , equivariant with respect to the Weyl group Wk=Bk:=(Z/2)⊕k⋊Sk, where U is a representation of Wk and S(U)⊂U the corresponding unit sphere. We develop general methods for computing topological obstructions for the existence of such equivariant maps. Among the new results is the well-known open case of 5 measures and 2 hyperplanes in R8 [E.A. Ramos, Equipartitions of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996) 147–167]. The obstruction in this case is identified as the element 2Xab∈H1(D8;Z)≅Z/4, where Xab is a generator, which explains why this result cannot be obtained by the parity count formulas of Ramos [loc. cit.] or the methods based on either Stiefel–Whitney classes or ideal valued cohomological index theory [E. Fadell, S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems, Ergodic Theory Dynam. Systems 8* (1988) 73–85].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 207, Issue 1, 1 December 2006, Pages 266-296