کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667914 1345486 2007 83 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genericity and amalgamation of classes of Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Genericity and amalgamation of classes of Banach spaces
چکیده انگلیسی

We study universality problems in Banach space theory. We show that if A is an analytic class, in the Effros–Borel structure of subspaces of C([0,1]), of non-universal separable Banach spaces, then there exists a non-universal separable Banach space Y, with a Schauder basis, that contains isomorphs of each member of A with the bounded approximation property. The proof is based on the amalgamation technique of a class C of separable Banach spaces, introduced in the paper. We show, among others, that there exists a separable Banach space R not containing L1(0,1) such that the indices β and rND are unbounded on the set of Baire-1 elements of the ball of the double dual R∗∗ of R. This answers two questions of H.P. Rosenthal.We also introduce the concept of a strongly bounded class of separable Banach spaces. A class C of separable Banach spaces is strongly bounded if for every analytic subset A of C there exists Y∈C that contains all members of A up to isomorphism. We show that several natural classes of separable Banach spaces are strongly bounded, among them the class of non-universal spaces with a Schauder basis, the class of reflexive spaces with a Schauder basis, the class of spaces with a shrinking Schauder basis and the class of spaces with Schauder basis not containing a minimal Banach space X.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 209, Issue 2, 1 March 2007, Pages 666-748