کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4667984 1345490 2006 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Toroidal crossings and logarithmic structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Toroidal crossings and logarithmic structures
چکیده انگلیسی

We generalize Friedman's notion of d-semistability, which is a necessary condition for spaces with normal crossings to admit smoothings with regular total space. Our generalization deals with spaces that locally look like the boundary divisor in Gorenstein toroidal embeddings. In this situation, we replace d-semistability by the existence of global log structures for a given gerbe of local log structures. This leads to cohomological descriptions for the obstructions, existence, and automorphisms of log structures. We also apply toroidal crossings to mirror symmetry, by giving a duality construction involving toroidal crossing varieties whose irreducible components are toric varieties. This duality reproduces a version of Batyrev's construction of mirror pairs for hypersurfaces in toric varieties, but it applies to a larger class, including degenerate abelian varieties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 202, Issue 1, 1 May 2006, Pages 189-231