کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668043 1345493 2007 56 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps
چکیده انگلیسی

We show that certain naturally arising cones over the main component of a moduli space of J0-holomorphic maps into Pn have a well-defined Euler class. We also prove that this is the case if the standard complex structure J0 on Pn is replaced by a nearby almost complex structure J. The genus-zero analogue of the cone considered in this paper is a vector bundle. The genus-zero Gromov–Witten invariant of a projective complete intersection can be viewed as the Euler class of such a vector bundle. As shown in a separate paper, this is also the case for the “genus-one part” of the genus-one GW-invariant. The remaining part is a multiple of the genus-zero GW-invariant.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 214, Issue 2, 1 October 2007, Pages 878-933