کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4668056 | 1345494 | 2008 | 29 صفحه PDF | دانلود رایگان |

We prove in this paper that for a quasi-compact and semi-separated (nonnecessarily noetherian) scheme X, the derived category of quasi-coherent sheaves over X, D(Aqc(X)), is a stable homotopy category in the sense of Hovey, Palmieri and Strickland, answering a question posed by Strickland. Moreover we show that it is unital and algebraic. We also prove that for a noetherian semi-separated formal scheme X, its derived category of sheaves of modules with quasi-coherent torsion homologies Dqct(X) is a stable homotopy category. It is algebraic but if the formal scheme is not a usual scheme, it is not unital, therefore its abstract nature differs essentially from that of the derived category Dqc(X) (which is equivalent to D(Aqc(X))) in the case of a usual scheme.
Journal: Advances in Mathematics - Volume 218, Issue 4, 10 July 2008, Pages 1224-1252