کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668113 1345497 2008 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inhomogeneous infinity Laplace equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Inhomogeneous infinity Laplace equation
چکیده انگلیسی

We present the theory of the viscosity solutions of the inhomogeneous infinity Laplace equation in domains in Rn. We show existence and uniqueness of a viscosity solution of the Dirichlet problem under the intrinsic condition f does not change its sign. We also discover a characteristic property, which we call the comparison with standard functions property, of the viscosity sub- and super-solutions of the equation with constant right-hand side. Applying these results and properties, we prove the stability of the inhomogeneous infinity Laplace equation with nonvanishing right-hand side, which states the uniform convergence of the viscosity solutions of the perturbed equations to that of the original inhomogeneous equation when both the right-hand side and boundary data are perturbed. In the end, we prove the stability of the well-known homogeneous infinity Laplace equation , which states the viscosity solutions of the perturbed equations converge uniformly to the unique viscosity solution of the homogeneous equation when its right-hand side and boundary data are perturbed simultaneously.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 217, Issue 4, 1 March 2008, Pages 1838-1868