کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668185 1345502 2008 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dirac operators and spectral triples for some fractal sets built on curves
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Dirac operators and spectral triples for some fractal sets built on curves
چکیده انگلیسی

We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral triples do describe the geodesic distance and the Minkowski dimension as well as, more generally, the complex fractal dimensions of the space. Furthermore, in the case of the Sierpinski gasket, the associated Dixmier-type trace coincides with the normalized Hausdorff measure of dimension log3/log2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 217, Issue 1, 15 January 2008, Pages 42-78