کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668188 1345502 2008 80 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Configurations in abelian categories. IV. Invariants and changing stability conditions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Configurations in abelian categories. IV. Invariants and changing stability conditions
چکیده انگلیسی

This is the last in a series on configurations in an abelian category A. Given a finite poset (I,≼), an (I,≼)-configuration (σ,ι,π) is a finite collection of objects σ(J) and morphisms ι(J,K) or in A satisfying some axioms, where J,K are subsets of I. Configurations describe how an object X in A decomposes into subobjects.The first paper defined configurations and studied moduli spaces of configurations in A, using Artin stacks. It showed well-behaved moduli stacks ObjA,M(I,≼)A of objects and configurations in A exist when A is the abelian category coh(P) of coherent sheaves on a projective scheme P, or mod-KQ of representations of a quiver Q. The second studied algebras of constructible functions and stack functions on ObjA.The third introduced stability conditions(τ,T,⩽) on A, and showed the moduli space of τ-semistable objects in class α is a constructible subset in ObjA, so its characteristic function is a constructible function. It formed algebras , , , of constructible and stack functions on ObjA, and proved many identities in them.In this paper, if (τ,T,⩽) and are stability conditions on A we write in terms of the , and deduce the algebras are independent of (τ,T,⩽). We study invariants or Iss(I,≼,κ,τ) ‘counting’τ-semistable objects or configurations in A, which satisfy additive and multiplicative identities. We compute them completely when A=mod-KQ or A=coh(P) for P a smooth curve. We also find invariants with special properties when A=coh(P) for P a smooth surface with nef, or a Calabi–Yau 3-fold.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 217, Issue 1, 15 January 2008, Pages 125-204