کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668193 1345502 2008 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Eckmann–Hilton argument and higher operads
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The Eckmann–Hilton argument and higher operads
چکیده انگلیسی

The classical Eckmann–Hilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppose we have a one object, one arrow 2-category, then its Hom-set is a commutative monoid. A similar argument due to A. Joyal and R. Street shows that a one object, one arrow tricategory is ‘the same’ as a braided monoidal category.In this paper we begin to investigate how one can extend this argument to arbitrary dimension. We provide a simple categorical scheme which allows us to formalise the Eckmann–Hilton type argument in terms of the calculation of left Kan extensions in an appropriate 2-category. Then we apply this scheme to the case of n-operads in the author's sense and classical symmetric operads. We demonstrate that there exists a functor of symmetrisation Symn from a certain subcategory of n-operads to the category of symmetric operads such that the category of one object, one arrow, … , one (n−1)-arrow algebras of A is isomorphic to the category of algebras of Symn(A). Under some mild conditions, we present an explicit formula for Symn(A) which involves taking the colimit over a remarkable categorical symmetric operad.We will consider some applications of the methods developed to the theory of n-fold loop spaces in the second paper of this series.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 217, Issue 1, 15 January 2008, Pages 334-385