کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668206 1345503 2006 62 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Configurations in abelian categories—I: Basic properties and moduli stacks
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Configurations in abelian categories—I: Basic properties and moduli stacks
چکیده انگلیسی

This is the first in a series of papers on configurations in an abelian category A. Given a finite partially ordered set (I,≼), an (I,≼)-configuration(σ,ι,π) is a finite collection of objects σ(J) and morphisms ι(J,K) or π(J,K):σ(J)→σ(K) in A satisfying some axioms, where J,K are subsets of I. Configurations describe how an object X in A decomposes into subobjects, and are useful for studying stability conditions on A.We define and motivate the idea of configurations, and explain some natural operations upon them—subconfigurations, quotient configurations, substitution, refinements and improvements. Then we study moduli spaces of (I,≼)-configurations in A, and natural morphisms between them, using the theory of Artin stacks. We prove well-behaved moduli stacks exist when A is the abelian category of coherent sheaves on a projective scheme P, or of representations of a quiver Q.In the sequels, given a stability condition (τ,T,⩽) on A, we will show the moduli spaces of τ-(semi)stable objects or configurations are constructible subsets in the moduli stacks of all objects or configurations. We associate infinite-dimensional algebras of constructible functions to a quiver Q using the method of Ringel–Hall algebras, and define systems of invariants of P that ‘count’τ-(semi)stable coherent sheaves on P and satisfy interesting identities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 203, Issue 1, 20 June 2006, Pages 194-255