کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668365 1345523 2006 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Turán number for the hexagon
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
On the Turán number for the hexagon
چکیده انگلیسی

A long-standing conjecture of Erdős and Simonovits is that ex(n,C2k)ex(n,C2k), the maximum number of edges in an n  -vertex graph without a 2k2k-gon is asymptotically 12n1+1/k as n tends to infinity. This was known almost 40 years ago in the case of quadrilaterals. In this paper, we construct a counterexample to the conjecture in the case of hexagons. For infinitely many n, we prove thatex(n,C6)>3(5-2)(5-1)4/3n4/3+O(n)>0.5338n4/3.We also show that ex(n,C6)⩽λn4/3+O(n)<0.6272n4/3ex(n,C6)⩽λn4/3+O(n)<0.6272n4/3 if n   is sufficiently large, where λλ is the real root of 16λ3-4λ2+λ-3=016λ3-4λ2+λ-3=0. This yields the best-known upper bound for the number of edges in a hexagon-free graph. The same methods are applied to find a tight bound for the maximum size of a hexagon-free 2n×n2n×n bipartite graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 203, Issue 2, 10 July 2006, Pages 476–496
نویسندگان
, , ,