کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668395 1633859 2006 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large sieve inequalities for GL(n)-forms in the conductor aspect
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Large sieve inequalities for GL(n)-forms in the conductor aspect
چکیده انگلیسی

Duke and Kowalski in [A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math. 139(1) (2000) 1–39 (with an appendix by Dinakar Ramakrishnan)] derive a large sieve inequality for automorphic forms on GL(n) via the Rankin–Selberg method. We give here a partial complement to this result: using some explicit geometry of fundamental regions, we prove a large sieve inequality yielding sharp results in a region distinct to that in [Duke and Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math. 139(1) (2000) 1–39 (with an appendix by Dinakar Ramakrishnan)]. As an application, we give a generalization to GL(n) of Duke's multiplicity theorem from [Duke, The dimension of the space of cusp forms of weight one, Internat. Math. Res. Notices (2) (1995) 99–109 (electronic)]; we also establish basic estimates on Fourier coefficients of GL(n) forms by computing the ramified factors for GL(n)×GL(n) Rankin–Selberg integrals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 200, Issue 2, 1 March 2006, Pages 336-356