کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668735 1346069 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weak forms of Banach–Stone theorem for C0(K,X) spaces via the αth derivatives of K
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Weak forms of Banach–Stone theorem for C0(K,X) spaces via the αth derivatives of K
چکیده انگلیسی

Let X be a Banach space and S   be a locally compact Hausdorff space. By C0(S,X)C0(S,X) we will stand the Banach space of all continuous X-valued functions on S endowed with the supremum norm.Suppose that C0(S,X)C0(S,X) contains a copy of some C0(K)C0(K) space with K infinite. Does it follow that the cardinality of the αth derivative of K is less than or equal to the αth derivative of S, for every ordinal number α  ? In general the answer is no, even when α=0α=0.In the present paper we prove that the answer is yes whenever X   contains no copy of c0c0 and α=0α=0. Moreover, in the case where α>0α>0 and the αth derivative of S   is infinite, we show that the existence an isomorphism from C0(K)C0(K) into C0(S,X)C0(S,X) with distortion ‖T‖‖T−1‖‖T‖‖T−1‖ strictly less than 3 provides also a positive answer to this question.As a consequence, we improve a classical Cengiz theorem and a recent result on isomorphisms between spaces of vector-valued continuous functions by obtaining two weak forms of Banach–Stone theorem for C0(S,X)C0(S,X) spaces via the αth derivatives of S.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 139, Issue 8, December 2015, Pages 880–891
نویسندگان
, ,