کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4668820 1346079 2014 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic approach to homogenization of a non-divergence form semilinear PDE with non-periodic coefficients
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Probabilistic approach to homogenization of a non-divergence form semilinear PDE with non-periodic coefficients
چکیده انگلیسی

We consider a semilinear partial differential equation (PDE) of non-divergence form perturbed by a small parameter. We then study the asymptotic behavior of Sobolev solutions in the case where the coefficients admit limits in C̀esaro sense. Neither periodicity nor ergodicity will be needed for the coefficients. In our situation, the limit (or averaged or effective) coefficients may have discontinuity. Our approach combines both probabilistic and PDEs arguments. The probabilistic one uses the weak convergence of solutions of backward stochastic differential equations (BSDE) in the Jakubowski S-topology, while the PDEs argument consists to built a solution, in a suitable Sobolev space, for the PDE limit. We finally show the existence and uniqueness for the associated averaged BSDE, then we deduce the uniqueness of the limit PDE from the uniqueness of the averaged BSDE.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 138, Issue 4, June 2014, Pages 483–509
نویسندگان
, , , ,