کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4668942 | 1346091 | 2012 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove a variational principle for stochastic flows on manifolds. It extends V.I. Arnoldʼs description of Lagrangian Euler flows, which are geodesics for the L2 metric on the manifold, to the stochastic case. Here we obtain stochastic Lagrangian flows with mean velocity (drift) satisfying the Navier–Stokes equations.We study the stability properties of such trajectories as well as the evolution in time of the rotation between the underlying particles. The case where the underlying manifold is the two-dimensional torus is described in detail.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 136, Issue 8, December 2012, Pages 857-881
Journal: Bulletin des Sciences Mathématiques - Volume 136, Issue 8, December 2012, Pages 857-881