کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4669058 1346100 2011 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semilinear backward doubly stochastic differential equations and SPDEs driven by fractional Brownian motion with Hurst parameter in (0,1/2)
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Semilinear backward doubly stochastic differential equations and SPDEs driven by fractional Brownian motion with Hurst parameter in (0,1/2)
چکیده انگلیسی

We study the existence of a unique solution to semilinear fractional backward doubly stochastic differential equation driven by a Brownian motion and a fractional Brownian motion with Hurst parameter less than 1/2. Here the stochastic integral with respect to the fractional Brownian motion is the extended divergence operator and the one with respect to Brownian motion is Itôʼs backward integral. For this we use the technique developed by R. Buckdahn (1994) [3] to analyze stochastic differential equations on the Wiener space, which is based on the Girsanov theorem and the Malliavin calculus, and we reduce the backward doubly stochastic differential equation to a backward stochastic differential equation driven by the Brownian motion. We also prove that the solution of semilinear fractional backward doubly stochastic differential equation defines the unique stochastic viscosity solution of a semilinear stochastic partial differential equation driven by a fractional Brownian motion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 135, Issue 8, December 2011, Pages 896-935