کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4669272 1346121 2009 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ricci flow on a 3-manifold with positive scalar curvature
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Ricci flow on a 3-manifold with positive scalar curvature
چکیده انگلیسی

In this paper we consider Hamilton's Ricci flow on a 3-manifold with a metric of positive scalar curvature. We establish several a priori estimates for the Ricci flow which we believe are important in understanding possible singularities of the Ricci flow. For Ricci flow with initial metric of positive scalar curvature, we obtain a sharp estimate on the norm of the Ricci curvature in terms of the scalar curvature (which is not trivial even if the initial metric has non-negative Ricci curvature, a fact which is essential in Hamilton's estimates [R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255–306]), some L2-estimates for the gradients of the Ricci curvature, and finally the Harnack type estimates for the Ricci curvature. These results are established through careful (and rather complicated and lengthy) computations, integration by parts and the maximum principles for parabolic equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 133, Issue 2, March 2009, Pages 145-168