کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4669443 1346149 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Limit cycles of polynomial differential systems bifurcating from the periodic orbits of a linear differential system in RdRd
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Limit cycles of polynomial differential systems bifurcating from the periodic orbits of a linear differential system in RdRd
چکیده انگلیسی

Let Pk(x1,…,xd)Pk(x1,…,xd) and Qk(x1,…,xd)Qk(x1,…,xd) be polynomials of degree nknk for k=1,2,…,dk=1,2,…,d. Consider the polynomial differential system in RdRd defined byx˙1=−x2+εP1(x1,…,xd)+ε2Q1(x1,…,xd),x˙2=x1+εP2(x1,…,xd)+ε2Q2(x1,…,xd),x˙k=εPk(x1,…,xd)+ε2Qk(x1,…,xd), for k=3,…,dk=3,…,d.Suppose that nk=n⩾2nk=n⩾2 for k=1,2,…,dk=1,2,…,d. Then, by applying the first order averaging method this system has at most (n−1)nd−2/2(n−1)nd−2/2 limit cycles bifurcating from the periodic orbits of the same system with ε=0ε=0; and by applying the second order averaging method it has at most (n−1)(2n−1)d−2(n−1)(2n−1)d−2 limit cycles bifurcating from the periodic orbits of the same system with ε=0ε=0. We provide polynomial differential systems reaching these upper bounds.In fact our results are more general, they provide the number of limit cycles for arbitrary nknk.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bulletin des Sciences Mathématiques - Volume 133, Issue 6, September 2009, Pages 578–587
نویسندگان
, ,